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Abstract. We carry out Density Matrix Renormalization Group (DMRG) calculations on the interchain
coupling model for the quasi-one-dimensional organic ferromagnets under open boundary condition. Con-
sidering the topology of the system, the two-step DMRG technique is adopted. It is found that in the
high spin ground state of the system the interchain coupling is in favor of the stability of ferromagnetic
state, and the on-site electron-electron repulsive interaction has the same effect. However the inter-site
electron-electron interaction causes a charge density distribution along the main chain and weakens the
stability of the ferromagnetic ground state. The lattice distortion along the main chain is also discussed.

PACS. 75.40.Mg Numerical simulation studies — 75.30.Ds Spin waves

1 Introduction

Since the ferromagnetic ordering was discovered in an or-
ganic compound, p-NPNN(p-nitrophenyl nitronylnitrox-
ide) [1,2] about 10 years ago, more than 20 organic
ferromagnets based on ferromagnetic intermolecular in-
teractions have been synthesized [3]. Thus the chal-
lenge of understanding the organic ferromagnet has
led to much interest. For a zigzag chain consisting of
m-conjugated carbon atoms and a radical at every other
site, the Hamiltonian is described by the Su-Schrieffer-
Heeger model supplemented by spin coupling between the
m-electron and the radical electrons. The effect of inter-
chain coupling in this structure has also been studied for
an itinerant electron model including the lattice displace-
ment and electron-phonon coupling within the Hatree-
Fock approximation [4-6]. Although the ferromagnetic
order in the ground state of these models is obtained nu-
merically and analytically, and most of efforts are made by
means of mean-field theory, some other interesting prop-
erties are not known yet and more appropriate theoretical
methods are needed to study these systems.

In recent years, the density-matrix renormalization
group (DMRG) method introduced by White [7,8] has
proven a remarkable efficient one in the computation of
the ground state, the thermodynamic and the dynamic
properties of one-dimensional interacting electron mod-
els [9]. It has also been extended to various systems in-
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cluding quasi-one-dimensional organic and inorganic ma-
terials [10], weakly coupled ladder system [11], carbon
nano-tube ropes [12], quasi-one-dimensional spin-Peierls
systems [13], etc. However the investigation of organic fer-
romagnets by DMRG is only at the beginning.

In this article, we use DMRG to study an inter-
chain coupling model considering the interchain electron
transfer between the corresponding sites on the near-
est neighboring chains. The simplified structure of the
quasi-one-dimensional organic polymer ferromagnets is
schematically shown in Figure 1. As is known, the DMRG
method has trouble dealing with periodic boundary con-
dition, so we discuss the total energy, the spin config-
uration and the lattice distortion with open boundary
condition. In Section 2, the theoretical model and the com-
putational process are given. In Section 3 we discuss the
effect of interchain coupling parameters, boundary condi-
tion, electron-phonon interaction on the system. Finally
we will give a brief summary of our results in Section 4.

2 The theoretical model and computational
method

Considering two neighboring coupling chains, the

Hamiltonian is written as:

H=H, +H,+H (1)
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Fig. 1. Two neighboring chains of an organic ferromagnet. “M”
labels the site on the main chain and “R” is the side radical.
T denotes the hopping integral between the m-electron on the
main chain and the unpaired electron at the side radical, and
T> (T3) are interchain electron hopping from the odd site(even
site) in the first chain to the corresponding odd site (even site)
of the second chain.

H = - Z[to + ’Y(Ujl - ujl+1)] (cjllo—cjll+10' + hc)
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H' = - Z[TQ(l — &) + T351](cf1l0021la +h.c). (4)

lo

The first term H; describes the interchain hopping of
the m—electrons on each main chain and the unpaired elec-
trons at side radicals, the electron-phonon interaction and
the distortion of the lattice, where C;rilcr (¢jilo) denotes the
creation(annihilation) operator of a m—electron (i = 1)
along each main chain or an unpaired electron (i = 2)
at a side radical with spin ¢ on the Ith site of the jth
chain, tg is the nearest neighboring hopping integral of
the m—electron along each main chain when there is no
distortion, 77 is the nearest neighboring hopping integral
between the m—electron on the main chain and the un-
paired electron at side radical, v is the electron-phonon
coupling constant, uj; is the displacement of the Ith site
of the jth main chain, x is the elastic constant of the lat-
tice. We assume that the side radicals connect with the
even carbon atoms, then d; = 1 for an even site and §; = 0
for odd site.
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The second term Hs describes the Hubbard on-site
electron-electron repulsion (the first term in Hy) and the
nearest-neighboring Coulomb repulsion (the second term
in Hy) of the m—electron and the unpaired electron at
side radical. nj;0 = cjilgcjug where o denotes spin up or
spin down. H’ describes the interchain interaction, where
T5(T3) is the interchain electron transfer from the odd site
(even site) of the first main chain to the corresponding odd
site (even site) of the second main chain.

It is convenient to cast all quantities into dimensionless
forms as

H T;
h = yu=_—v=—,1 = 7(1*]-;273)4)7 (5)
to to to to
27 (=1 (ujr — ujis1)y
to’/TIi,le to ( )

Then, the Hamiltonian is transformed as follows:

1
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jl

jlo
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lo

where A is defined as the electron-phonon coupling param-
eter. Using the Hellmann-Feynman theorem, we have the
self-consistency equation:

1
Yjl = (—1)571')\ <pjl — N %:pym) .

Here, N is the number of the sites along each main chain
and the bond order is defined as:

Pt = <Z (C;FUJCJ‘U_HU + hC>> .

g

(®)

9)

According to the above Hamiltonians and the topo-
logical structure of the interchain coupling system, we use
open boundary condition by DMRG algorithm. The whole
computational process consists of two steps. In the first
step only the single chain is constructed in finite DMRG
scheme. We start with four sites of the main chain with two
radicals and systematically add one atom, or one atom and
one radical bond to it in the middle of the system, build-
ing up the molecule in such a way that the right block
states are obtained by the reflection of the left block sym-
metrically. In this implementation we store the matrices
corresponding to the operators of the left block for conve-
nience of the next step, so it takes up a large storage space.
Subsequently in the second step, numerical renormaliza-
tion algorithm is implemented for the two coupled chains
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Fig. 2. The ground state energy, the spin gap A, and the charge gap A. as a function of the the coupling t2 with v = 1.0,

v=0.0,ts = 0.3, A = 0.4.

and a transformation is made by use of the eigenstates of
the single chain in the previous step. Then the spin den-
sity of every site and the total energy of the system and
other related properties can be calculated by means of the
ground state wave function. The similar conception has
been exhibited in Moukouri and Caron’s work [14], where
they studied the anisotropic quantum spin half Heisenberg
model on a square lattice by combing the DMRG method
and the renormalization group (RG) method.

The feasibility and the rationality of the two-step
DMRG method are judged as follows: for our Hubbard
model Hamiltonian, the dimension of the Hilbert space
is of the order of more than 4%, where L is the number
of atoms of the system. It is very difficult for the tradi-
tional DMRG to treat this kind of systems. However in
this work we first obtain the low energy Hamiltonian of
the single chain with radicals connected to even site, so
that the ground state properties is reserved in the block
form and the dimension of the Hamiltonian is largely re-
duced. Furthermore, to enhance the accuracy of our calcu-
lations, in the first step we have done DMRG calculation
with at most 120 density matrix eigenvectors reserved af-
ter making sure that the energy converges for this trun-
cation. The estimated truncation error is typically of the
order of 107°. The stability of the optimized configura-
tion is ensured since the difference between two successive
iterations is less than 10~% for lattice configuration. In
the second step, we increase the up-spin electron number
from 0 to the total electron number L in the case of half-
filling. The results show that the lowest energy state lies
in the subspace of the total spin S = 1/2 x L/3, and
most of the states are in its nearby subspaces, which is
the case of weak interchain interaction.

3 Results and discussions

We study two neighboring open chains shown in Figure 1.
Each chain includes 10 carbon atoms and 5 side radicals
due to the restriction of computer memory. Since the in-
vestigation on the organic ferromagnetic materials is at
the initial stage, in our calculation we take the electron-
phonon interaction A, the Hubbard electron-electron cor-
relation u, which are unknown yet, as the same order
as those of polyacetylene. The hopping term ¢; is set
as 0.9, which is smaller than that between two neighboring
m-electrons since the radical electron is relatively localized.

First, we study the total energy and the ferromagnetic
stability of the system. Due to the topological structure of
the system, different interchain couplings with respect to
different sites of the chain will be also discussed. This is
similar to the situations for typical organic polymers with
chain-like structure, such as polyacene, in which the in-
terchain interaction is the interchain hopping of electrons,
but phonons are strictly one dimensional. With these pa-
rameters, we find the ground state is in the subspace of
the total spin S% = 1/2 x L/3 = 5, where L is the total
electron number. So the ground state of the system is a
high spin ferromagnetic state. Our results are shown in
Figure 2a for the lowest energy of the system with differ-
ent interchain coupling to and definite t3 = 0.3, u = 1,
A = 0.4. We can see clearly that the interchain coupling
decreases the total energy of the system so that the sta-
bility of ferromagnetic state becomes stronger.

Generally due to dimerization and Peierls instability,
there exists an energy gap in quasi-one-dimensional sys-
tems. From the results of the mean-field theory study on
interchain coupling model, it is analyzed that there is a
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Fig. 3. The spin density of the main chain (n =3m+1,3m +2, m =0, 1, 2, 3 ...) and the radical sides (n = 3m, m =1, 2,

3 ...) with t2 =t3 =0.2, v =0.0 and A = 0.2.

split between spin-up and spin-down states near the Fermi
level and the energy gap exists between the occupied states
and the unoccupied states [5]. For the estimation of the
energy gap, we define the spin gap A,(L) and the charge
gap A.(L) at the half filling [14] as follows:

a5 (Zon k1) (25)

3 33

2L L oL L

A =Ey [Z 41,2 ) +E (= -1,2
(L) 0<3+ 3>+ 0<3 3)

oy (2L L
3°3

where Ep(Ny,N|) is the lowest energy of the system
2L L

with Ny up and N| down spin electrons, and the Eo(%7, 5)
is the ground state energy which is obtained from com-
putational results. In Figures 2b and ¢ we give the spin
gap As(L) and the charge gap A.(L) as a function of the
interchain coupling to, respectively. It can be seen that the
charge gap A.(L) is bigger than spin gap As(L) and the
both gaps increase with the increase of the interchain cou-
pling. So we think the system shows the insulating prop-
erty and the interchain coupling is in favor of the stability
of the ferromagnetic ground state.

Second, we discuss the distribution of the spin den-
sity and the charge density. When neglecting the inter-
site electron-electron interaction (v = 0) and considering
only the on-site electron-electron repulsive interaction, it
is found that there appears antiferromagnetic spin den-
sity wave (SDW) along the main chain. Mediated by the
SDW, the ferromagnetic ordering is formed by the con-
centrated distribution of the spin density on the side rad-
ical [4]. Here, the appearance of the SDW state is the re-
sult of the on-site electron-electron repulsive interaction.
Figure 3 shows the distribution of the spin density on

the main chain and the side radical, which corresponds
ton =3m+ 1,3m + 2, and n = 3m + 3, respectively
(m is taken as an integer from 0 to 9). It can be seen
that the amplitude of the SDW along the main chain and
the side radical will increase with the increasing of the
on-site electron-electron repulsive interaction u. Thus the
ferromagnetic exchange interaction of the spins of the un-
paired electrons at side radicals will become stronger and
the ferromagnetic ground state of the system will be more
stable. When adding the inter-site electron-electron inter-
action, the charge density is no longer distributed uni-
formly. Figure 4 gives the distribution of the spin density
and the charge density on the main chain and the side
radical for different inter-site electron-electron interaction
v. We can see that the increase of the inter-site repulsion
v decreases the spin density amplitude of the radical spin
and strengthens the amplitude of the charge density along
the main chain. So it is argued that with the increasing of
the inter-site repulsion v, the system will transfer from a
SDW into a CDW state. Consequently the stability of the
ferromagnetic state will be weakened.

Finally we discuss the dimerization of the system
along each chain. The dimerization accompanied with the
Peierls transition is a unique feature in one dimensional
system. Figure 5 displays that with small electron-phonon
interaction the amplitude of the distortion changes alter-
natively along the main chain and the dimerization-like
distortion occurs. When increasing the electron-phonon
coupling A, the dimerization parameter decreases.

4 Conclusions

We have studied the interchain coupling model for a
quasi-one-dimensional organic ferromagnet using DMRG
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method with open boundary condition. The results of the
calculation indicate that the ground state of the inter-
chain coupling system discussed above is a high spin fer-
romagnetic state. The interchain coupling is in favor of
the stability of the ferromagnetic state for definite pa-
rameters. The onsite and the intersite electron interaction
and the electron-phonon interaction have competing in-

fluence on the ferromagnetism of the system. the larger
on-site electron-electron repulsive interaction will make
the ferromagnetic ground state of the system more stable,
while the inter-site electron-electron interaction causes
a charge density distribution along the main chain and
consequently weakens the stability of the ferromagnetic
ground state. With increase of electron-phonon coupling
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there is no longer a perfect dimerization along the main
chain of the system. These results are in agreement with
the solution of the mean-field theory. The two-step DMRG
method is useful in understanding the mechanism of the
ferromagnetic organic materials.
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10174023.

References

1. K. Awaga, Y. Maruyama, Chem. Phys. Lett. 158, 556
(1989)

2. M. Kinoshita, P. Turek, M. Tamura, K. Nozawa, D.
Shiomi, Y. Nakazawa, M. Ishikawa, M. Takahashi, K.
Awaga, T. Inabe, Y. Maruyama, Chem. Lett. 1225 (1991)

® N

10.

11.

12.

13.

14

Molecular Magnetism, edited by K. Itoh, M. Kinoshita
(Gordon and Breach, Tokyo, 2000)

Z. Fang, Z.L. Liu, K.L. Yao, Phys. Rev. B 49, 3916 (1994);
51, 1304 (1995)

W.Z. Wang, Z.L. Liu, K.L.. Yao, Phys. Rev. B 55, 12989
(1997)
W.Z. Wang, K.L. Yao, H.Q. Lin, J. Chem. Phys. 108, 2867
(1998)

S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

S.R. White, Phys. Rev. B 48, 345 (1993)

Density-Matriz  Renormalization Group, edited by 1.
Peschel, X. Wang, M. Kaulke, K. Hallberg (Springer, 1998)
K.L Yao, G.Y. Sun, W.Z. Wang, Eur. Phys. J. B 24, 309
(2001)

J. Sirker, A. Klimper, K. Hamacher, Phys. Rev. B 64,
134409 (2002); cond-mat/0102200

Toshiya Hikihara, Xiao Hu, Hsiu-Hau Lin, Chung-Yu Mou,
cond-mat/0303159

Makoto Kuwabara, Hitoshi Seo, Masao Ogata, J. Phys.
Soc. Jpn 72, 225 (2003); cond-mat/0301208

. S. Moukouri, L.G. Caron, Phys. Rev. B 67, 092405 (2003)



